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Abstract— Two-step methods are secant-like techniques 

of the quasi-Newton type that, unlike the classical methods, 

construct nonlinear alternatives to the quantities used in 

the so-called Secant equation.  Two-step methods instead 

incorporate data available from the two most recent 

iterations and thus create an alternative to the Secant 

equation with the intention of creating better Hessian 

approximations that induce faster convergence to the 

minimizer of the objective function. Such methods, based 

on reported numerical results published in several 

research papers related to the subject, have introduced 

substantial savings in both iteration and function 

evaluation counts. Encouraged by the successful 

performance of the methods, we explore in this paper 

employing them in developing a new Conjugate Gradient 

(CG) algorithm. CG methods gain popularity on big 

problems and in situations when memory resources are 

scarce.  The numerical experimentations on the new 

methods are encouraging and open venue for further 

investigation of such techniques to explore their merits in a 

multitude of applications. 

 

Keywords— weighted Conjugate Gradient methods, 

quasi-Newton Methods, multi-step methods, unconstrained 

optimization.  

I. INTRODUCTION 

HIS work addresses problems of the form: 

 

 
 

Conjugate Gradient methods (CG) are a class of methods 

for solving large unconstrained optimization problems. Their 

 
 

storage requirements are rather minimal compared to other 

methods as they do not store any matrices. While such 

methods converge to the minimum in at most n iterations on 

quadratic functions for accurate line searches, they are also 

employed to optimize non-quadratic functions where line 

searches are not usually exact. In the context of minimizing 

non-quadratic functions, the methods need to be restarted 

when certain criteria are met (see [22]). Such methods have 

been the subject of many research papers in which variations 

to the original method of Fletcher and Reeves [9] have been 

examined (see, for example, [2,5,13,14]).   

To minimize f, the sequence of iterates generated is given by   

 

                         (1) 

 

where  is a positive scalar and  is a CG search direction. 

The search direction is computed using 
 

              (2) 

 

for some chosen scalar and where denotes the gradient of 

the function f at xi. The search direction  is normally 

required to satisfy 

 
 

to ensure it is a downhill direction. In order to ensure global 

convergence,  may be required to satisfy the sufficient 

downhill condition 

 

 
for some positive constant  

Different formulae for lead to different CG algorithms. 

Some published choices are 
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in addition to many other suggestions (see, for example, 

[13,16,20,22,23]). The above formulae are, respectively, due 

to Fletcher-Reeves [9], Hestenes-Stiefel [15], Polyak [22], 

Polak–Ribiére [21], Liu-Storey [16] and Dai–Yuan [5].  

      This paper derives a new CG algorithm that is based on 

the multi-step approach while avoiding the storage of any 

update matrix. Anderi [2] applies updates to the identity matrix 

to build the conditioning matrix.  Ford et al. [13] develop 

multi-step CG methods that do not involve any weighting 

matrices. Our derivation follows rather a different approach. 

The next section introduces the idea of multi-step and the 

specific two-step methods. The derivation of the new method 

is done in Section 3. Finally, the numerical results are 

presented followed by the conclusions. 

 

II. MULTI-STEP QUASI-NEWTON METHODS 

Quasi-Newton methods update a step-wise approximation to 

the Hessian of the objective function nxn matrix that exploits 

the latest computed data [3]. Given Bi, the most recent 

approximation to the Hessian, the next Hessian approximation, 

Bi+1 is classically updated to satisfy the classical secant 

relation: 

 

             (3) 

 where 

 
and 

 
 

The BFGS formula [3,10,11] is the most popular update 

formula that satisfies (3) especially that it is the most 

successful update that performs best so far with inaccurate line 

search algorithms [3,13,14]. This rank-two update that 

approximates the actual Hessian is given by 

 

 
A straight line L is usually used in the standard secant 

equation to find a new point xi+1, given the previous point xi, 

while higher order polynomials are employed in the 

construction of the multi-step techniques.  

    Let {x(τ)}, denoted by X, define a differentiable path in , 

for τ ∈ R.   The polynomial x(τ) is chosen to satisfy 

 

x( ) = xi-m+j, for j = 0, 1,…,m, 

 

for some non-overlapping values . The 

corresponding gradient points are defined by a similar 

polynomial z(τ) satisfying 

 

z( ) = gi-m+j, for j = 0, 1,…,m. 

 

If the Chain rule is applied to the gradient vector 

z(x(τ)) g(x(τ)), we obtain 

 

     .                       (4) 

 

This indicates that, for any point on the path X, the Hessian 

matrix G satisfies (4) for any chosen value of the parameter τ. 

In particular, for τ = τc, where τc ∈  the following is 

obtained 
 

 

 
   

    To derive a relation similar to the secant equation the 

new Hessian approximation must satisfy at the new point xi+1, 

some value for the τ-parameter, namely τm, that corresponds to 

the latest iterate, is selected such that 

 

 

 
or                                                                                                          

 ,                         (5) 

 

where the vectors ri and wi are constructed using the latest m 

step vectors  and the respective m gradient 

difference vectors , as follows (where  

denote the standard Lagrange polynomials) 

 

 
and   

 
for 

 
and 

 
    Several choices for the parameters  have been 

considered in Ford and Moghrabi [10]. Such choices are 

sensitively influential to the structure of the interpolating 

curve. In this paper, the choice based on the so-called 

Accumulative Approach [12, 17, 18] is elected due to its 

numerical merits. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2020.14.20 Volume 14, 2020

ISSN: 1998-0159 162



 

 

        The choices taken into consideration for the values 

 are based on a metric expressed using 

 

 

, 

 

where the matrix M is some symmetric positive-definite 

matrix. 

        The Accumulative approach considered here focuses on 

one of the points, say xj, and chooses its corresponding 

parameter τj to be zero. Then, any , that corresponds to the 

point xi-m+k+1, for all k except for k = j, is obtained by the 

accumulation of the distance (calculated using ) between 

every adjacent pair of iterates in the sequence from xi-m+j+1 to 

xi-m+k+1. Therefore, for k = 0,1,...,m, any parameter  is 

calculated as 

 

 

,      

     = 0, k = j,                      

         (6) 

 

This technique yields τ-values that obey 

 

 
 

such that no overlapping occurs for any pair of points. 

    Once the parameters {τk} are computed, the vectors x′(τm) 

and g′(τm) in (5) (or vectors ri and wi, respectively) are 

obtainable and hence the new Hessian approximation Bi+1 is 

computed so that (5) is satisfied. 

    It is worth noting that the values obtained for  -parameters 

are sensitive to the choice of the matrix M in .  Different 

choices lead to different values and result in different 

numerical behavior. Ford and Moghrabi [11,12] report that 

tests involving values of m > 2 have not yielded considerable 

numerical improvements, a thing that may be attributed to 

possibly the non-smoothness of the interpolant, the choice m = 

2 is adopted in this work and such methods are termed as two-

step methods. Two-step methods exploit data available from 

the two latest steps in updating the Hessian approximation.   

Choices considered for the matrix M (see [12, 17,18]) 

include M = Bi , M = Bi+1 and M = I.  For the 2-step 

methods, the Hessian approximation is updated to generally 

satisfy: 

 

    (7) 

(or 

 
where 

 
and 

 

For our numerical tests, the choice M = I is taken in (6) and 

hence 

 

 
This yields 

               (8) 

 

More generally, (8) may be modified by plugging in a 

scaling parameter,   that offers more control in this 

context since setting the scalar to zero provides convenient 

switching to the standard secant one-step update. Therefore, 

 

                    (9) 

The multi-step BFGS Hessian approximation update formula 

is given by  

 .     (10) 

III. A NEW MULTI-STEP CG METHOD (MSCG) 

In this work, the search direction under study has the form 

 

               (11) 

 

(see [2]) where may be taken to be some selected scalar or a 

carefully chosen positive definite matrix. To illustrate, if 

 then (11) is equivalent to (2). If, on the other hand,  

is taken to be a matrix that approximates the inverse Hessian, 

then  combines both conjugate gradient and quasi-Newton 

direction vectors. In this work, we consider a variant of the 

latter case. 

When the linear CG methods is applied to a quadratic 

function, the computed search vectors satisfy the following 

conjugacy condition 

 

                            (12) 

 

where A is the constant Hessian of the quadratic objective 

function that is known to be positive definite. However, when 

the objective function is non-quadratic, a more reasonable 

choice than relation (12) may be taken such that (see [13]) 

 

.                (13) 

 

Perry [20] studied possible improvements to the CG 

methods by considering advantages of the quasi-Newton 

methods. His approach uses (3) and the fact that the quasi-

Newton search direction is computed using , then 

Perry replaced (13) with 

.                  (14) 

Using (14), one gets 

 

or (from (7)) 

. 

This yields 

,                    (15) 
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for some to impose conjugacy.                                                 

Upon substituting (compare to (11)) 

 

                   (16) 

in (15), we obtain 

 

 

 

giving the following expression for   

 

.                (17) 

 

The choice  is adopted here and  is chosen to 

ensure that  for the method derived here. The search 

direction takes the form  

 

 
 

with  given by (17). 

Global convergence of the Fletcher-Reeves method was 

proven by Al-Baali [1] on general functions with inexact line 

search. Dai and Yuan [5] derived using the secant condition 

for which global convergence was proven.  In order to 

guarantee the convergence of the algorithm in [5], the step size 

 in (1) is deemed acceptable provided it satisfies the Wolfe 

conditions [28] 

 

           (18) 

             (19) 

 

where   

 

The following lemma highlights the conditions that ensure the 

search direction is downhill. 

 

Lemma. The search direction given by (16) is a downhill 

direction for choices of  .  

 

Proof. Given that , it follows that 

  

As for later iterations, pre-multiplying (16) by  gives 

 

 
 

which, assuming  is downhill, yields a downhill 

direction for choices of   that ensure that . 

IV. NUMERICAL COMPUTATIONS 

Our numerical results are benchmarked against those of 

Anderi’s [2] SCALCG. The results reported in Table II are for 

different selections of the parameter  in (9) in order to 

determine its effect on the numerical behavior of the method. 

The values that appear in Table II for  correspond to 0, 0.5 

and 1, respectively. Other values have been considered but 

they bear no significant changes. The numbers reported 

indicate iteration/function and gradient evaluations counts, 

respectively. The problems are primarily those found in 

[1,2,5,13,14,25,26,20,27,29] and are listed in Table I. 

 

 

TABLE I. Test Problems 

 

P 

 

 

Function 

Name 

 

Dimension 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

11 

 

12 

 

Extended Rosenbrock 

Extended Powell Singular 

Trigonometric  

Oren  

Cube  

Wood  

Beale  

Helical Valley 

Penalty I  

Watson function 

 

Variably dimensioned function  

 

Generalized Shallow function  

 

n = 100000 

n = 100000 

n = 100000 

n = 10000 

n = 2 

n = 4 

n = 2 

n = 3 

n =2 

3 ≤ n ≤ 14 

 

2 ≤ n ≤ 10000 

 

 

2 ≤ n ≤ 1000, 

n is even 

 

 

TABLE II. Function and gradient evaluations 

 

problem  MSCG Anderi’s 

 

 

1 

 

0 

 

22/70 

 

21/69
* 

½ 24/75 

1 28/101 

2 0 25/73 21/69
*
 

½ 31/78 

1 30/76 

3 0 61/151
* 

70/201 

½ failed 

1 77/163 

4 0 390/1701
*
 

390/1770 

½ 392/1707 

1 373/1696
* 

5 0 21/41 31/51 

1/2 25/69
 

1 49/91 

6 0 71/129
* 

68/141 

1/2 72/147 

1 failed 

7 0 4/11
 

4/12 

1/2 4/10 

1 4/10
*
 

8 0 11/201 12/193
* 

1/2 12/202 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION 
DOI: 10.46300/9102.2020.14.20 Volume 14, 2020

ISSN: 1998-0159 164



 

 

1 14/210 

9 0 7/23 8/21 

1/2 6/19
* 

1 7/20 

10 0 8/21 7/22 

1/2 4/11 

1 7/19
* 

11 0 401/991 368/909 

1/2 failed 

1 338/812 

12 0 17/77 17/78 

1/2 15/70
* 

1 16/78 

totals  951/3273 1017/3536 

scores 7 3 

 

 

The numerical scores, reported in Table II, reveal that the new 

method MSCG displays some improvements over Anderi’s [2] 

on several problems without the need to store any conditioning 

matrices. The star appearing next to a score indicates a win on 

that problem. The last row of Table II reports the totals for 

each method.  

The methods tested here implement the same line search 

strategy with the choices  and  in (18) 

and (19), respectively . The termination criterion used for the 

two methods tested here is  

 
Both methods were restarted periodically using Powell’s 

[22] test to measure the degree of orthogonality 

 

         (20) 

 

Whenever (20) is satisfied at step i, the restart is applied with 

 in (16), for  (see [2]). 

V. CONCLUSIONS 

A new Conjugate Gradient method is developed. The 

method generates search directions that exploit the multi-step 

quasi-Newton idea to accelerate convergence of the CG 

algorithms. The method requires less storage to implement 

than SCALCG [2]. This save in resources is especially 

appreciated on large problems.  

Other choices for the parameters in (16) are under 

consideration to determine whether the numerical behavior of 

the method can be improved further. There also remains the 

issue of developing automatic restart criteria that provides 

appropriate switching among several options similar to what 

was done in [1]. The global convergence properties of such 

methods are also under study. 
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